Chapter 2 Introduction
Suppose we have a list of genes.
<- paste0("gene",1:1000)
genes set.seed(20210302)
<- list(A = sample(genes,100),
gene_list B = sample(genes,200),
C = sample(genes,300),
D = sample(genes,200))
library(dplyr)
2.1 VennDiagram
VennDiagram
(Chen 2018) is currently the most popular Venn plot tool in R environment.
library(VennDiagram)
<- venn.diagram(x = gene_list, filename = NULL)
VennDiagram ::plot_grid(VennDiagram) cowplot
It provide basic functions to draw Euler plot.
<- draw.triple.venn(
venn.plot area1 = 65,
area2 = 75,
area3 = 85,
n12 = 35,
n23 = 15,
n13 = 25,
n123 = 5,
category = c("First", "Second", "Third"),
fill = c("blue", "red", "green"),
lty = "blank",
cex = 2,
cat.cex = 2,
cat.col = c("blue", "red", "green"),
euler.d = TRUE
)
::plot_grid(venn.plot) cowplot
helper function to get Venn partitions.
get.venn.partitions(gene_list) %>% dplyr::as_tibble()
## # A tibble: 15 x 7
## A B C D ..set.. ..values.. ..count..
## <lgl> <lgl> <lgl> <lgl> <chr> <named list> <int>
## 1 TRUE TRUE TRUE TRUE A∩B∩C∩D <chr [1]> 1
## 2 FALSE TRUE TRUE TRUE (B∩C∩D)<U+2216>(A) <chr [7]> 7
## 3 TRUE FALSE TRUE TRUE (A∩C∩D)<U+2216>(B) <chr [2]> 2
## 4 FALSE FALSE TRUE TRUE (C∩D)<U+2216>(A∪B) <chr [41]> 41
## 5 TRUE TRUE FALSE TRUE (A∩B∩D)<U+2216>(C) <chr [5]> 5
## 6 FALSE TRUE FALSE TRUE (B∩D)<U+2216>(A∪C) <chr [25]> 25
## 7 TRUE FALSE FALSE TRUE (A∩D)<U+2216>(B∪C) <chr [12]> 12
## 8 FALSE FALSE FALSE TRUE (D)<U+2216>(A∪B∪C) <chr [107]> 107
## 9 TRUE TRUE TRUE FALSE (A∩B∩C)<U+2216>(D) <chr [5]> 5
## 10 FALSE TRUE TRUE FALSE (B∩C)<U+2216>(A∪D) <chr [48]> 48
## 11 TRUE FALSE TRUE FALSE (A∩C)<U+2216>(B∪D) <chr [22]> 22
## 12 FALSE FALSE TRUE FALSE (C)<U+2216>(A∪B∪D) <chr [174]> 174
## 13 TRUE TRUE FALSE FALSE (A∩B)<U+2216>(C∪D) <chr [10]> 10
## 14 FALSE TRUE FALSE FALSE (B)<U+2216>(A∪C∪D) <chr [99]> 99
## 15 TRUE FALSE FALSE FALSE (A)<U+2216>(B∪C∪D) <chr [43]> 43
2.2 colorfulVennPlot
This package can specify the filled color for each region, but the first required parameter is a numeric vector of length 15, with specific names in suitable order, which makes it is very complicated to setup and use.
Besides, the filled color need to be specified one by one, which is very complicated as well.
library(colorfulVennPlot)
<- c('red', 'yellow', 'green', 'pink', 'darkgreen','blue','lightblue','tan',
Colors 'yellowgreen','orange','purple','white','grey','plum','brown')
<- seq(15)
regions names(regions) <- c('1000', '0100', '1100', '0010', '1010', '0110', '1110', '0001',
'1001', '0101', '1101', '0011', '1011', '0111', '1111')
plotVenn4d(regions, Colors=Colors)
2.3 venn
Using venn
is very simple.
library(venn)
venn(gene_list)
venn
also support different shapes.
venn(x = gene_list, ellipse = TRUE)
venn
support ggplot
, but it depends on ggpolypath
, which is not popular.
::venn(gene_list, ellipse = TRUE, ggplot = TRUE) venn
venn
plots Venn diagram up to 7 sets.
::venn(5) venn
::venn(6) venn
::venn(7) venn
venn
accepts multiple format of input.
<- c('~A~B~C~D', '~A~B~CD', '~A~BC~D', '~A~BCD', '~AB~C~D', '~AB~CD', '~ABC~D', '~ABCD', 'A~B~C~D', 'A~B~CD', 'A~BC~D', 'A~BCD', 'AB~C~D', 'AB~CD', 'ABC~D', 'ABCD')
intersections venn(intersections, zcol = colors()[sample(1:657, 16)])
venn("A*D, A*B*~C + B*C*~D", zcol = c("blue", "red"))
venn("AD, AB~C + BC~D", zcol = c("blue", "red"))
venn("1-----")
venn("100 + 110 + 101 + 111")
2.4 nVennR
nVennR
provides an interface for the nVenn
algorithm (Pérez-Silva, Araujo-Voces, and Quesada 2018). This algorithm works for any number of sets, and usually yields pleasing and informative Venn diagrams with proportionality information.
library(nVennR)
<- plotVenn(gene_list) myNV
cat(myNV$svg)
2.5 eulerr
eulerr
generates area-proportional euler diagrams that display set relationships (intersections, unions, and disjoints) with circles or ellipses.
Unlike Venn diagrams, which show all possible relations between different sets, the Euler diagram shows only relevant relationships.
Venn diagrams are a more restrictive form of Euler diagrams. A Venn diagram must contain all \(2^n\) logically possible zones of overlap between its \(n\) curves, representing all combinations of inclusion/exclusion of its constituent sets.
library(eulerr)
## Warning: package 'eulerr' was built under R version 4.1.1
<- venn(gene_list)
venn_plot plot(venn_plot)
<- euler(gene_list)
euler_plot plot(euler_plot)
At the time of March 9th, 2021, it is possible to provide input to eulerr as either
a named numeric vector with set combinations as disjoint set combinations or unions (depending on how the argument type is set in euler()), a matrix or data frame of logicals with columns representing sets and rows the set relationships for each observation, a list of sample spaces, or a table.
# Input as a matrix of logicals
set.seed(1)
<- cbind(
mat A = sample(c(TRUE, TRUE, FALSE), 50, TRUE),
B = sample(c(TRUE, FALSE), 50, TRUE),
C = sample(c(TRUE, FALSE, FALSE, FALSE), 50, TRUE)
)<- euler(mat)) (fit2
## original fitted residuals regionError
## A 13 13 0 0.008
## B 4 4 0 0.002
## C 0 0 0 0.000
## A&B 17 17 0 0.010
## A&C 5 5 0 0.003
## B&C 1 0 1 0.024
## A&B&C 2 2 0 0.001
##
## diagError: 0.024
## stress: 0.002
The diagnose function is good.
error_plot(fit2)
2.6 venneuler
venneulerr
depends on JAVA runtime environment, which makes its installation is unbearable for non-JAVA users.
Besides, it only has one exported function, which doesn’t support list input.
library(venneuler)
## Warning: package 'rJava' was built under R version 4.1.1
<- c(A=0.3, B=0.3, C=1.1, "A&B"=0.1, "A&C"=0.2, "B&C"=0.1 ,"A&B&C"=0.1,"D"=0.2,"C&D"=0.1)
combinations <- venneuler(combinations)
vd plot(vd)
2.7 RVenn
RVenn
is a package for dealing with multiple sets, while the base R functions (intersect
, union
and setdiff
) only work with two sets.
The functions overlap, unite and discern abstract away the details, so one can just construct the universe and choose the sets to operate by index or set name.
RVenn
provide a ggvenn()
function to draw 2-3 sets Venn diagram. In this case,
its advantages are mostly rely on set operation functions.
library(RVenn)
ggvenn(Venn(gene_list[1:3]))
2.8 gplots
gplots
provides various R programming tools for plotting data. It supports Venn plot up to five sets.
library(gplots)
venn(gene_list)
2.9 ggVennDiagram
(Gao 2021)
library(ggVennDiagram)
## Warning: package 'ggVennDiagram' was built under R version 4.1.1
ggVennDiagram(gene_list)
2.10 ggvenn
(Yan 2021)
library(ggvenn)
ggvenn(gene_list)
ggvenn
can show elements in polygon regions.
<- list(A = c("apple", "pear", "peach"),
a B = c("apple", "lemon"))
ggvenn(a, show_elements = TRUE)
ggvenn(a, show_elements = TRUE, label_sep = "\n") # show elements in line